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Abstract 

In this paper, we define the topology of Hamiltonian homeomorphisms on regular Poisson manifold, and prove that Hameo(M) is a 

topological group and it is a normal subgroup of the Poisson Homeomorphisms, and show that the Hamiltonian homeomorphisms 

arising from the two norms  coincide on the regular Poisson manifold. 
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Introduction 

 

This paper is devoted to establishing the topology of 

Hamiltonian homeomorphisms of Hamiltonian 

dynamical system on Poisson manifold. 

Hamiltonian dynamical system plays an important 

role in differential geometry and mechanics, 

Hamiltonian homeomorphisms induced by this 

system are one of the main concerning objects. 

According to Klein’s program: “Given a manifold 

and a transformation group acting on it, to 

investigate those properties of figures on that 

manifold which are invariant under transformations 

of that group”. Studying symplectic geometry and 

Poisson geometry should research the group of 

symplectic diffeomorphisms and Poisson 

diffeomorphism. In symplectic dynamical system, 

this program was studied by many mathematicians. 

A manifold is symplectic if it is a smooth manifold 

and equipped with a closed non-degenerate 

differential 2-form, the Hamiltonian 

diffeomorphism is the time-1 map of the following 

dynamical system 

 

 t ti f dF    .                                           (1)               

                                                                                                       

Here 
tf  is defined by  

 

 
0 0

0

1

|
t t t

t t

d
f f f

dt




     .                                             (2) 

 

When the manifold is symplectic, A bi-invariant 

metric was first discovered by Hofer on the group of 

compactly surpported symplectic diffeomorphism 

of
2

0( , )nR  (where 0  is the standard symplectic 

form) [1,2]. And Viterbo defined a bi-invariant 

metric  on 
2

0( , )nR   by generating function theory 

[3]. Polterovich extended it to more symplectic 

manifolds by the theory of pseudo holomorphic 

curves [8,9,17], and finally Lalonde and Mcduff to 

general symplectic manifold [4]. This metric plays 

an important role in studying symplectic topology, 

and has close relationship with symplectic capacity 

and symplectic rigity, many mathematicians have 

great work in this field, but there is few work on 

Poisson manifold. With the help of Casimir 

functions and the decomposition of Poisson 

manifold, we define a Hofer-type norm on Poisson 

manifold [10]. Oh and Muller introduced the notion 

of Hamiltonian limits of smooth Hamiltonian flows 

and constructed the 0C concept of Hamiltonian 

diffeomorphisms, called Hamiltonian 

homeomorphisms, which forms a normal subgroup 

of the group of symplectic homeomorphisms[7]. 

Muller proved that the Hamiltonian 

homeomorphisms arising from the 1,L   norm and the 

L   norm coincide [6]. The contact topology is 

studied by Banyaga, Muller and Spaeth, they define 

the completion of the contact topology and the  0c   

concept of contact diffeomorphisms [11,12,14-16]. 

With the help of 0C  contact topology, we can 

understand more about the contact manifold and 

contact dynamical systems. In order to detect more 
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about the Poisson dynamical systems, we study the 

completion of Hamiltonian diffeomorphism on 

Poisson manifold and give the definitions of 

Hamiltonian homeomorphisms in the Poisson case. 

We use Hameo(M) to denote the sets of 

Hamiltonian homeomorphisms, the main results of 

this paper are the following: 

Theorem 1 Hameo(M)  is a topological group. 

Theorem 2 The group of Hamiltonian 

homeomorphism  Hameo M  is path connected. 

 

Theorem 3 Hameo(M) is a norm subgroup of the 

Poisson homeomorphisms Poisson(M). 

Theorem 4 The Hamiltonian homeomorphism 

arising from the 1,L   norm and the L   norm 

coincide on the Poisson manifold, that is 

       

          1,Hameo M Hameo M     .                        (3) 

 

Organization of this paper: In the second part we 

will introduce some notions of Poisson manifold 

and give the construction of the Hamiltonian 

homeomorphisms. In the third part, we will give 

some lemmas and the proof of the main results. 

 

Preliminaries 

 

In this part, we will give some basic notions of Poisson 

manifold and Hofer metric, details can be found in 

[2,18,19]. Let (M,{  ,   }) be a Poisson manifold, 

i.e.,there exists a Poisson bracket{  ,  } on the smooth 

functions C


(M). For any function f, g, h  C


(M). it 

satisfies:  

 

1.{f,g}= -{g,f}, 

2.{f,gh}=g{f,h}+h{f,g}                                            (4) 

3. {f,{g,h}}+{h,{f,g}}+{g,{h,f}}=0. 

 

Definition 1 A smooth diffeomorphism  : M M  

is called  a Poisson diffeomorphism if for all g, h  

C


(M), we have 

 

g{ ,h}={ , }g h    
  .                                       (5) 

 

Given h  C


(M), the Hamiltonian vector is defined 

by  

X h ={  , h}.                                                              (6) 

 

So next we consider the following Hamiltonian 

dynamical system  

 

(t) (t, x)Hx X .                                                         (7) 

 

Let Cas(M)={f  C


(M): {f,g}=0, g  C


(M)}be 

the set of Casimir functions. We consider the time-

dependent Hamiltonian functions C


([0,1]M,R). If the 

manifold is compact, or the function is compactly 

supported, then the flow of the Hamiltonian vector 

globally exists. In the following of this paper we always 

assume that M is closed. We denote by P(M),Ham(M) the 

set of such Hamiltonian flows and  the set of time-1 map 

of such flows respectively. 

Next we recall the definition of Hofer metric, For a 

smooth function ( , )f C M R , we define its Hofer 

oscillation as following 

 

  max ( ) min ( )
x Mx M

f h x h x
 
  .                         (8) 

 

Now we define 

 

1 1 2 2inf{ , ( )}f f f f f f Cas M


     . (9) 

 

If tH is a Hamiltonian flow with some Hamiltonian 

function ( )h x , we define its length to be 

 

    
1

0
( ) ( )t tlength H h x dt                                (10) 

 

the energy of ( )Ham M   is defined by 

 

( ) inf{ ( )  

is a hamiltonian flow ended with }.

t tE length H H




        (11)  

 

Then, we can define a function d as:  

 

( ) ( ) [0, )Ham M Ham M   , 

1( , ) ( )d E    ,                                         (12) 

 

for , ( )Ham M   . 

However, it is difficult to prove that it is indeed a really 

metric. In [10], it was shown that d  is really a bi-

invariant metric.  

 

3 Construction of the Hamiltonian homeomorphisms  

Let Homeo(M) be the group of homeomorphism of M 

with the 0c  topology, for  , Homeo M  , their 

C
0

 distance is defined by 
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1 1

( , )

max{supd( (x), (x)),supd( (x), (x))},
x x

d  

    
(13) 

where d is a 0c distance on M induced by some 

Riemannian metric [7]. Then for given two continuous 

paths 

 

, :[0,1] Homeo(M)   , 

(0) id  , (0) id   .                                         (14) 

 

Their distance is defined by  

 

[0,1]
( , ) max ( (t), ( ))

t
d d t   


 .                           (15) 

 

Definition 2 Define Peo(M) to be 

 

(M) (M)Poe Poisson                                      (16) 

the 
0C  closure of  Poisson(M)  in Homeo(M), and 

call Poe(M) the Poisson homeomorphism group. 

We now define the Hamiltonian topology on the sets 

of Hamiltonian paths: 

Definition 3 the Hamiltonian topology is generated by 

the colloections of subsets 

 

1 2, ,H   

' '

'

1 2{ (M) # H , ( , ) }.HH H
P H d          (17) 

For 
1 ,

2 >0, and a smooth Hamiltonian path 
H . The  

Definition 4 The Hamiltonian topology on ( )p M is 

the topology induced by the following metric 

 

( , ) ( )( , ) ( , )t t t t t

ham h k h h kd k h t d               (18) 

 

for , ( )t t

h k p M   .The Hamiltonian topology on 

Ham(M) to be the strongest topology such that the 

evaluation map  

 

1 : (M) (M)ev P Ham                                       (19) 

 

is continuous. 

Then from the definitions we have the following 

proposition. 

Proposition 5 The Hamiltonian topology on P(M) is 

equivalent to the metric topology induced by hamd
. 

Proposition 6 The left translation of the group P(M) 

are continuous, that is for each Hamiltonian path, the map 

 

: (M) (M)L P P   

( )L        .                                                     (20) 

is continuous with respect to the Hamiltonian topology on 

P(M), the sets of the form: 

 

1 2 1 2( , , ), , 0H id                                     (21) 

 

makes a neighborhood basis at 
H . 

Proposition 6 gives rise the following corollary. 

Corrolary 7 The evaluation map 

 

1 : (M) (M)ev P Ham                                       (22) 

 

is an open map with respect to the Hamiltonian topology 

on Ham(M). For a Hamiltonian map (M)Ham  with 

the generating function H, the sets of the form:  

  

1 1 2 1 2( , , ), , 0Hev                                     (23) 

 

gives a neighborhood basis at   in the Hamiltonian 

topology. 

Following the methods of Oh and Muller [6,7], we 

now define the Hamiltonian homeomorphism. Consider 

the developing map 

 

: ( ) ([0,1] , )Dev p M C M R  , 

( ) [ ]t

hDev h    ,                                                      (24) 

 

Where [ ]h  denotes the equivalent class of the generating 

functions of 
t

h , and the inclusion map: 

 

: ( ) ( , )pp M Homeo M id  , 

( )t t

h h    ,                                                              (25) 

 

where ( , )pHomeo M id  is the path in 

( )Homeo M based at id . 

We now consider the product maps defined as follows : 

 

( , ) : ( ) ([0,1] , ) ( , )pDev p M C M R Homeo M id    ,

([ ], )t t

h hh  .                                                           (26) 

 

Denote by Q  the image of the above product map 

with product topology, and Q  the closure of Q  

in
1, ([0,1] , ) ( , )pL M R Homeo M id   . From the 

definition of the Hamiltonian topology, the developing 

and inclusion maps can be extended to the the following 

continuous maps: 

 
1,: ([0,1] , )Dev Q L M R   
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: ( , )pQ Hoemeo M id  ,                                    (27) 

 

and the evaluation map 

 

1 : ( , ) ( )pev Hemeo M id Hemeo M , 

( ) (1)t                                                           (28) 

 

can also be extended to 

 

1 1: Im ( ) ( )ev age ev Homeo M  .                     (29) 

 

Now we can give the definition of Hamiltonian 

homeomorphism. 

Definition 8 Define the following sets 

 

1

( )

{ ( ) ( ), Im ( )},

Hameo M

Homeo M ev age    



  
         (30)                                                                                              

and call any element in ( )Hameo M  a Hamiltonian 

homeomorphismd. 

 

4 Proof of the main results 

 

Before we prove the main results we need the following 

lemmas which are very important to compute the 

generating functions for the Hamiltonian flows. 

Definition 9 If ,h k are smooth functions in 

([0,1] , )C M R  and ( )Ham M we define the 

functions , #h h k and h as follows: 

 

( , ) ( , ( ))t

hh t x h t x 
 

1# ( , ) ( , ) ( ,( ) ( ))t

hh k t x h t x k t x                       (31) 

1( , ) ( , ( ))h t x h t x  . 

 

The following propositions and lemmas were proved in 

[2] in symplectic case and [10] for Poisson case. 

Proposition 10 If ,h k are smooth functions the 

following formulate hold true 

 
1( )t t

hh
   ,

#

t t t

h k h k   , 

1t t

h h     ,
-1( )t t t

h k go   ,                      (32) 

 

where  

 

# ( )( , )t

hg h k k h t    .                                     (33) 

 

Lemma 11   defined above is a pseudo-norm and 

( )Ham M -invariant. 

Lemma 12 let (M,{}) be a poisson manifold, and   

be a Poisson vector, on each symplectic leaf F,there is a 

well defined symplectic structure such that the inclusion 

map i: F M  is a poisson map, that is, there exists a 2-

form 2

F F   such that  

 

(X ,X ) {f,g}F f F g F F        .                                (34) 

  

For any function , (M)f g C , here 
.

 denotes the 

restriction on F. 

Lemma 13 let (M,{}) be a Poisson manifold, and   

be a Poisson vector, on each symplectic leaf F, For any 

functions , (M)f g C ,we have 

 

{f,g} {f ,g }F F F
                                                    (35) 

 

Lemma 14 If 
t  is the Hamiltonian flow of HX  , 

then For any functions , (M)f g C , there is: 

 

( ) {f,g} {( ) , ( ) }t t tf g                                           (36) 

 

Having this, we can discuss the properties of Hamiltonian 

homeomorphisms. 

Theorem 1. Hameo(M)  is a topological group. 

Proof :To prove that ( )Hameo M is a group, note that 

the Hofer norm in the Poisson case need involve the 

Casimir functions [10], so we need check that the 

inequalities of [6,7] still work in Poisson case. We first 

claim that the composition and inverse on the sets 

( )Hameo M are defined as follows:  

Suppose that ( ,[ ]) ( ,[ ])h f Q   , then we define 

 
1( ,[ ]) ( ,[ ]) ( ,[ ( )])h f h f       , 

1 1( ,[ ]) ( ,[ ])h h   .                                     (37) 

 

Let ( ,[ ])
i

t

h ih  and ( ,[ ])
i

t

f if  converge to 

( ,[ ]), ( ,[ ])h f   respectively in the Hamiltonian 

topology, and choose ,h f  represent [ ],[ ]h f . 

First we have 

 

 ( ( ), ) 0
i i

t t

h fd t     , 

1 1( , ) 0
i

t

hd     ,                                                    (38) 

  

as i  . 

By the triangle inequality of the  , we get 
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1
1

0 ( )

1

0 ( )

1
1 1

0 ( )

1
1 1

0

1 1

inf # ( ( ))

inf

inf [ ( , ( ) ) ( ) ]

( , ( ) ) ( , ( ) )

+ ( , ( ) ) ( , ) .

i

i i

i

i i
g Cas M

i
g Cas M

t

i h
g Cas M

t t

i i h h

t

h

h f h f g dt

h h g dt

f t f g dt

h h dt f t f t

f t f t dt



 

 

 





 

 

 

 

 

  

   

 

   











          (39) 

                                                                                      

By the assumption, the first two terms of equation (39) 

converge to zero as i  , we just need to compute the 

last term of equation (39), and 

 
1

1

0

1
1 1

0

( , ( ) ( )) ( , ( ))

( , ( ) ( )) ( , ( ) ( ))

i

i i

t

h

t t

h i h

f t x f t x dt

f t x f t x

 

 



 



 




 

1 1

1 1

  ( , ( ) ( )) ( , ( ))

( , ( )) ( , ( )) .

i

t

i h i

i

f t x f t x

f t x f t x dt

 

 

 

 

 

 
                      (40) 

 

But by Lemma 3.21 of [7], and the fact that 

 

 

( )

.inf i i
g Cas M

h g h g
 



                                      (41) 

 

We know that the third term converges to zero and 

hence the composition is continuous. 

Similarly, we still use Lemma 3.21 of [7] and the 

above fact, 

 
1 1

0 0
( )

i

t

i i h i ih h dt h h h h dt    


     
 

                  0  .                                                        (42) 

 

So the product map and the inverse map are continuous 

and we finish the proof.  

Corollary 15 The group Hameo(M) contains all 1,1 C -

Hamiltonian  maps. 

 Proof:  We can approximated the 1,1 C  function by a 

sequence of smooth functions ih  such that 

 
1

0
0ih h dt   as i  ,                                   (43) 

 

On the other hand, the vector field (t, x)
iHX  

converges to (t, x)HX  uniformly over [0,1]t , by the 

continuity theorem of ordinary differential equations for 

Lipschitz vector fields, the flow  

 

i

t t

h h                                                                       (44) 

 

in the 
0C -topology. And especially we have : 

 
1 1

ih h  .                                                                    (45) 

 

So by the definition of Hamiltonian homeomorphism, 

we know that all 
1,1 C -Hamiltonian maps are 

Hamiltonian homeomorphisms. 

As we know, in the symplectic manifold, the group of 

Hamiltonian diffeomorphisms is path connected, since 

every Hamiltonian map can be connected with the 

identity map. Weinstein discovered the local 

connectedness of Symplectic diffeomorphisms by the 

symplectic neighbourhood theory [5,13]. Oh and Muller 

proved the Hamiltonian homeomorphism group is path 

connected. In the Poisson case, we proved that  

Theorem 2 The group of Hamiltonian homeomorphism 

 Hameo M  is path connected. 

Proof. To prove the connectedness, we should prove 

that every Hamiltonian Homeomorphism can be 

connected with the identity map. 

By definition, suppose t (M)h Hameo , then there exists 

a sequence of Hamiltonian paths 
iH  with Hamiltonian 

functions iH , and satisfies that  

 

  ,
i

t

H   

 H ,i H                                                                      (46) 

  (0) , (1) .id h    

 

Here   is a continuous Hamiltonian path in the 

Hamiltonian homeomorphism group. Next we modify the 

paths by the following as in the methods of Oh and 

Muller in [7]: 

 

t s
Hii

t st

H
   .                                      (47)                                                          

 

For all [0,1]s  and we have:  

 

( , ) ( , ) 0
i i i i

s s

H H H Hd d   
 
  , 

0,s s

i i i iH H H H                                           (48)                                     

as , 0i i  . 

So the Hamiltonian functions 
s

iH  generating the path 

s
i

t

H
  are a Cauchy sequence in the Hamiltonian topology. 

We denote by ( ,H )s s  the new limit of s
i

t

H
 and 

s

iH , 

note that s  is just the path (st) , we have the following  
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  (0) , (1) .id h                                                         (49) 

 

Since every Hamiltonian homeomorphism can be 

connected with the identity, we prove that  Hameo M  

is path connected. 

Proof of Theorem 2: 

   For      Peo M , Hameo M ,    there exists 

diffeomorphism    Poisson M , P M
i

t

i h   such that 

 
i

t

h   , 

1

0
  0ih h dt    ,                               (50)                                                    

  

as i   and  

 

   1                                                                         (51) 

 

is the norm which is defined before and which involves 

the Casimir functions. By Proposition 6 we need to show 

that:  

 
1 1 t

i h i       .                                        (52) 

 

  hi i  converges in the
1,L 

 topology.  

The first one is obvious, and the second term follows 

from the same argument as in the proof of Theorem 1.  

 

           

   

1 1

0 0

1

0
.

i i i i i i

i i i i

h h dt h h h h dt

h h h h dt

     

 

    

   

 



  (53)                                                                                      

 

We get that the above terms converge to zero, and 

finish the proof. 

Remark 16 By the path connectedness, and the 
1,L 

 

Approximation Lemma later, we can modify every 

topological Hamiltonian path to be boundary flat, we 

know that the concatenation of two topological 

Hamiltonian path is still a topological Hamiltonian path. 

If we replace the 
1,  L 

 -norm by the  L  -norm in the 

definition of Hameo(M), we get another construction of 

Hamiltonian homeomorphisms. We denote by 

 1,Hameo M
 and  Hameo M

respectively. In 

particular, we have  

 

   1,Hameo M Hameo M    .                                  (54) 

 

By repeating the proof of Theorem 1, we can get the 

following results: 

Theorem 17  Hameo M
 is also a topological group. 

Theorem 18  Hameo M
 is a norm subgroup of 

 1,Hameo M
 . 

 Muller proved that  1,Hameo M
 and  Hameo M

 

coincide in the symplectic case, we now prove this fact 

on the Poisson manifold. 

Lemma 19  Let H  be a smooth normalized 

Hamiltonian function generating the smooth Hamiltonian 

path                   

 

: t .t

H H                                                                  (55) 

 

Then given any   0  , there exists a smooth 

normalized Hamiltonian function  F :  0,1 M R   

such that F and hence F  is boundary , that is, there 

exists δ > 0 such that  

0tF   for  0 t ,  1 t 1       

0 0  ,F H   

1 1 ,F H                                                                     (56) 

 1,
<F H 


  

  ,  F Hd   


 . 

 

 Proof: This is a consequence of Lemma 3.20 and 3.21 

in [7] and the fact that 

 

( )

.inf i i
g Cas M

h g h g
 



                                               (57) 

 

The proof of the following lemmas are almost the 

same, we omit it here. The proof of these lemmas in the 

symplectic case can be found in Müller [6,7]. 

Lemma 20  Let H  be a smooth normalized 

Hamiltonian function generating the smooth Hamiltonian 

path  : t 0,1 .t

H H   Let   0   be given. Then 

there exists a smooth normalized Hamiltonian function 

 F :  0,1 M R   such that the following holds 

 
0 0  ,F H   

1 1 ,F H                                                                       (58) 

1,
+F H 

 
  , 

   0 0,  , .F H H Hd d    
 

   

 

where 
0  H  denotes the constant path 

0t .H  

Lemma 21  Let H  be a smooth normalized 

Hamiltonian function generating the smooth Hamiltonian 

path : t .t

H H   There exists a positive constant C that 

depends only on H such that, given any   0  , there 

exists a smooth normalized Hamiltonian function 
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 F :  0,1 M R   such that F and hence F  is 

boundary  

 

0 0  ,F H   

1 1 ,F H   

2 +C ,F H H  
                                                     

(59) 

3 +C ,F H  
  

 ,  .F Hd   


  

 

Lemma 22 Given 0 ≤ a < b ≤ 1, and a smooth 

Hamiltonian H  defined on [0,1]×M, we denote by 

   ,  :  a,b 0,1a b   the unique linear function with  

                       

   a   0,  b   1,                                                    (60) 

 

and by 
a,bH 

 the reparameterized smooth 

Hamiltonian defined on  0,1 M.  Then if H  is 

normalized then so is 
a,bH 

, and if H  is boundary flat 

then again so is
a,bH 

, and we have the following 

 
a,b

1,1,
,H H


  

a,b 1
 H H

b a







  .                                           (61) 

 

Proof of Theorem 3:  

Since every Cauchy sequence iH  in the L
topology 

is also a Cauchy sequence in the 1,L   topology, we have 

   1,Hameo M Hameo M . 
  

Now we prove the converse. Let  1,Hameo M  , 

by definition, there exists a sequence  
i i,H H  of 

smooth Hamiltonian functions iH  generating the smooth 

Hamiltonian paths   

 

1 1

0 0
  ( )

i

t

i i h ih h dt h h dt  


   
 

1

0
  0ih h dt                                                 (62) 

 

with 

 

i

0

H
id   

such that 

 

 
__

1,
# 0 as i, ,j j i jH H H H j


                       (63) 

 

i

1

H  is a Cauchy sequence, its limit is  .  

Now using above lemmas and the procedure in [6], we 

can modify this sequence to be a L


 Cauchy sequence , 

Define 

                 

 
1

0 0,
ii HH     , 

1 #Hi i iK H    .                                                            (64) 

Applying lemma to each 
iK  , we get a sequence of 

iL , 

use lemma ,we get a sequence of boundary flat functions 

iM  satisfying their requirements there, and using Lemma 

to reparameterize iM  on small segments 1[t , t ]i i  ,  here 

it  is defined as 

1
1

2
i i
t     .                                                                  (65) 

Now we can concatenate the new function on the 

segments 1[t , t ]i i  since they are boundary flat and we 

can prove that  

 

1

1

2
i i i

F F  
   , 

1

1
( , )

2i iF F i
d  


   .                                                       (66) 

This finishes the proof.  

 

Remark 23 When the Poisson manifold is symplectic, 

that is, there is only one leaf, in this case the Hofer norm 

is just the one defined by Hofer, and the Hamiltonian 

homeomorphism is just the same with the construction of 

Oh and Muller’s. 

Remark 24 Theorem 1 holds not only for regular 

manifold, but also for many other manifold, for example, 

when the rank of the Poisson manifold is not zero, or the 

symplectic leaves are always open or always closed. 

 

5 Conclusion 

 

This paper first gives the conception of Hamiltonian 

homeomorphisms on Poisson manifold, and proves that it 

is a topological group, we also establish some 

approximation lemmas in Poisson dynamical systems, 

and finally extend Muller’s results from symplectic case 

to Poisson case. 
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